Nuclear Energy University Programs

Small Modular Reactors

Dan Ingersoll presented by Bob Hill

August 10, 2011

SMR Overview

Program Mission:

- Conduct research, development, and demonstration (RD&D) activities supporting the development and deployment of advanced small modular reactors (SMRs)
- Support the accelerated licensing and deployment of firstmover SMR designs

Status:

- New program for FY 2011 (still pending)
- Strong government and industry support

Workscope Description(s) Advanced Concepts

- Focus on concepts/designs that expand opportunities for nuclear energy
- Include all concepts/designs beyond first-to-market
 - Next-generation LWR
 - Non-LWR
- Solicit innovative SMR concepts that meet desired functional requirements, such as:
 - "Bullet proof" reactor concepts
 - Multi-product power plants (co-generation)
 - Reactor systems for small or unstable grids
- Evaluate technical viability of selected concepts
- Identify and develop supporting technologies

Workscope Description(s) ICHMI Pathway

- Address different design and operational aspects
 - New sensors and measurement systems for integral/pool designs and SMR-specific environments and conditions
 - Advanced control rooms and control architectures for multi-module operation
 - Diagnostics and prognostics methods for extended refueling cycles
- Address opportunities for further improvement in affordability
 - Increased automation and in situ monitoring
 - Expanded use of wireless communications
- Address needs for expanded functionality
 - Advanced controls for co-generation and grid-stabilizing operation

Workscope Description(s) Assessment Methods Pathway

- Adapt/extend existing performance and safety analysis codes to SMRs
- Develop PRA capability for passive safety systems and unique operational aspects of SMRs (staffing, EPZ, etc.)
- Develop advanced modeling and simulation methods
- Construct advanced economic models for SMR fabrication, construction and operation
- Develop SMR-specific site assessment and screening tools
- Assess SMR features that can reduce proliferation risk

Pathway

- Examine material and fuel degradation phenomena due to SMR-specific conditions (e.g. low coolant flow)
- Evaluate materials and fuels for advanced SMRs (e.g. extended fuel burn-up and longer refueling cycles)
- Evaluate/extend code cases for SMR materials/fuels
- Establish a demonstration project for integrated manufacturing of SMR modules

Workscope Description(s) Safety Assurance Pathway

- Develop advanced technologies for intrinsic safety and security
- Address issues identified in NRC SECY10-0034
- Collaborate with the Nuclear Energy Institute (NEI), American Nuclear Society (ANS) Special SMR Committee
- Coordinate with other organizations on SMR-related codes and standards (NESCC)

Grand Challenges

- Validate the improved safety case of SMRs
 - Required for Design Certification and Construction/Operations License applications
 - Provides strong motivator for new customers
- Demonstrate value of factory-fabricated nuclear steam supply system (NSSS)
 - Impacts economic viability of SMR
 - Also impacts plant quality, construction schedule and inspection requirements
- Develop enabling ICHMI technologies
 - Required for expanded operational and economic viability

SMR University R&D Interests

NEUP Nucleor Energy
University Programs
U.S. Department of Energy

- Advanced SMR concepts—expanding nuclear energy to more customers and applications
 - Understanding the technical and economic viability
 - Identifying technology gaps
 - Developing a technology roadmap
- Advanced technologies and methods—developing new capabilities and tools
 - Advanced sensors and instrumentation for SMR features and operations
 - Robust coolants, fuels and materials for severe accident response
 - Multi-physics simulation tools for SMR designs and conditions